翻訳と辞書 |
Gromov boundary : ウィキペディア英語版 | Gromov boundary
In mathematics, the Gromov boundary of a δ-hyperbolic space (especially a hyperbolic group) is an abstract concept generalizing the boundary sphere of hyperbolic space. Conceptually, the Gromov boundary is the set of all points at infinity. For instance, the Gromov boundary of the real line is two points, corresponding to positive and negative infinity. ==Definition==
There are several equivalent definitions of the Gromov boundary. One of the most common uses equivalence classes of geodesic rays. 〔Kapovich, Ilya, and Nadia Benakli. "Boundaries of hyperbolic groups." Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001) 296 (2002): 39-93.〕 Pick some point of a hyperbolic metric space to be the origin. A geodesic ray is a path given by an isometry . The Gromov boundary of a hyperbolic metric space is the set .
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Gromov boundary」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|